Application of Feed Forward Neural Network to Differential Protection of Turbogenerator
نویسنده
چکیده
This paper discusses the application of MultiLayer Feed Forward Neural Network (MFNN) for the differential protection of the turbogenerator based on pattern classification. The cases of all the possible internal faults in the stator of the generator with lap winding have been simulated using Modified Winding function Approach. The simulated fault currents in the phases and their parallel paths at the terminal and the neutral end have been considered for training and testing of the proposed MFNN. Different networks has been accordingly trained and tested to detect, identify and classify the internal fault in the stator. From the test results it is clear that the proposed networks are capable of correctly identifying and classifying the fault signal. KeywordsSynchronous generator; Turbogenerator; Differential Protection; Pattern Classification; Artificial Neural Network; Feedforward Neural Network.
منابع مشابه
Modeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network
Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...
متن کاملFeed Forward Artificial Neural Network Model to Estimate the TPH Removal Efficiency in Soil Washing Process
Background & Aims of the Study: A feed forward artificial neural network (FFANN) was developed to predict the efficiency of total petroleum hydrocarbon (TPH) removal from a contaminated soil, using soil washing process with Tween 80. The main objective of this study was to assess the performance of developed FFANN model for the estimation of TPH removal. Mater...
متن کاملSignal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملA Novel Fuzzy and Artificial Neural Network Representation of Overcurrent Relay Characteristics
Accurate models of Overcurrent (OC) with inverse time relay characteristics play an important role for coordination of power system protection schemes. This paper proposes a new method for modeling OC relays curves. The model is based on fuzzy logic and artificial neural networks. The feed forward multilayer perceptron neural network is used to calculate operating times of OC relays for various...
متن کاملSolving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks
In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...
متن کامل